$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
\sum_{n = 1}^{\infty}{\pars{-1}^{n + 1} \over \pars{2n - 1}^{3}} & =
\sum_{n = 1}^{\infty}\pars{-1}^{n + 1}\
\overbrace{{1 \over 2}\int_{0}^{1}\ln^{2}\pars{x}x^{2n - 2}\,\dd x}
^{\ds{1 \over \pars{2n - 1}^{3}}} =
{1 \over 2}\int_{0}^{1}\ln^{2}\pars{x}\sum_{n = 1}^{\infty}
\pars{-x^{2}}^{n - 1}\,\dd x
\\[5mm] & =
{1 \over 2}\int_{0}^{1}{\ln^{2}\pars{x} \over 1 + x^{2}}\,\dd x =
-{1 \over 2}\,\Im\int_{0}^{1}{\ln^{2}\pars{x} \over \ic - x}\,\dd x =
-{1 \over 2}\,\Im\int_{0}^{-\ic}{\ln^{2}\pars{\ic x} \over 1 - x}\,\dd x
\\[5mm] & =
-\,\Im\int_{0}^{-\ic}{\ln\pars{1 - x} \over x}\,\ln\pars{\ic x}\,\dd x
\\[5mm] & =
\Im\int_{0}^{-\ic}\mrm{Li}_{2}'\pars{x}\ln\pars{\ic x}\,\dd x\qquad
\pars{~\mrm{Li}_{s}:\ PolyLogarithm\ Function~}
\\[5mm] & =
-\,\Im\int_{0}^{-\ic}\mrm{Li}_{3}'\pars{x}\,\dd x =
-\,\Im\mrm{Li}_{3}\pars{-\ic} = \Im\mrm{Li}_{3}\pars{\ic}
\\[5mm] & =
{\,\mrm{Li}_{\color{#f00}{3}}\expo{2\pi\ic\pars{\color{#f00}{1/4}}} + \pars{-1}^{\color{#f00}{3}}\,\mrm{Li}_{\color{#f00}{3}}\expo{-2\pi\ic\pars{\color{#f00}{1/4}}} \over 2\ic} =
-{1 \over 2}\,\ic\bracks{-\,{\pars{2\pi\ic}^{\color{#f00}{3}} \over
\color{#f00}{3}!}\,\mrm{B}_{\color{#f00}{3}}\pars{\color{#f00}{1 \over 4}}}
\end{align}
The last expression is Jonqui$\mrm{\grave{e}}$re's Inversion Formula and $\ds{\mrm{B}_{n}}$ is a Bernoulli Polynomial. Note that
$\ds{\mrm{B}_{3}\pars{x} = x^{3} - {3 \over 2}\,x^{2} + {1 \over 2}\,x}$ such that
$\ds{\,\mrm{B}_{\color{#f00}{3}}\pars{\color{#f00}{1 \over 4}} =
{3 \over 64}}$.
$$
\bbx{\sum_{n = 1}^{\infty}{\pars{-1}^{n + 1} \over \pars{2n - 1}^{3}} =
{\pi^{3} \over 32}} \approx 0.9689
$$