Let $A$ be the set $\lbrace n\in \mathbb{N} : n=1$ or the only prime factors of $n$ are $2$ or $3 \rbrace $. So, $6\in A$ but $10\notin A$. Let $S=\sum_{n\in A} \frac{1}{n} $.
What can be said about $S$ ? Can $S$ be real number or $\infty$ ?
Let $A$ be the set $\lbrace n\in \mathbb{N} : n=1$ or the only prime factors of $n$ are $2$ or $3 \rbrace $. So, $6\in A$ but $10\notin A$. Let $S=\sum_{n\in A} \frac{1}{n} $.
What can be said about $S$ ? Can $S$ be real number or $\infty$ ?
Hint: compare $\;S\;$ to $\;\displaystyle\left(\sum_{j=0}^\infty\,\frac{1}{2^j}\right)\,\left(\sum_{k=0}^\infty\,\frac{1}{3^k}\right)\,$.
This is $$\sum_{j,k=0}^\infty\frac1{2^j3^k} =\left(\sum_{j=0}^\infty\frac1{2^j}\right) \left(\sum_{k=0}^\infty\frac1{3^k}\right).$$ It should be possible to evaluate this explicitly.