0

in the article:

http://i.cs.hku.hk/~ykchoi/quadrics/Ellipsoid_Separation.pdf

in example 1

if I set a=3; b=2; c=4; xc=-9; yc=0; zc=0; r=5; and

f(x)=-(x/a^2+1)(x/b^2+1)(x/c^2+1)(x+r^2)+x(x/c^2+1)(x/b^2+1)(xc/a)^2+ x*(x/a^2+1)(x/c^2+1)(yc/b)^2+x*(x/a^2+1)(x/b^2+1)(zc/c)^2=0;

the calculated roots are different from what mention in the article, why?

for the calculation I use this on matlab:

syms a b c r xc yc zc x

a=3; b=2; c=4; xc=9; yc=0; zc=0; r=5;

[cc]=solve(-(x/a^2+1)(x/b^2+1)(x/c^2+1)(x+r^2)+x(x/c^2+1)(x/b^2+1)(xc/a)^2+x*(x/a^2+1)(x/c^2+1)(yc/b)^2+x*(x/a^2+1)(x/b^2+1)(zc/c)^2==0,x)

gy ab
  • 35

0 Answers0