I often hear of identification $\mathbb{R^2} \cong \mathbb{C}$. Exactly what kind of isomorphism is there? Are we considering groups? Fields? Topological spaces? Or is it even a strict equality?
For example, can we say that the Heine-Borel theorem about compact sets in $\mathbb{R^n}$ holds for $\mathbb{C}$, meaning that the identification mentionned above is a homeomorphism of topological space?