$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
\delta E & = \int_{\Omega}\pars{\delta\verts{\nabla\mrm{u}}^{2}}\,\dd x =
\int_{\Omega}\pars{\verts{\nabla\mrm{u} + \nabla\delta\mrm{u}}^{2} -\verts{\nabla\mrm{u}}^{2}}\,\dd x =
\overbrace{\int_{\Omega}2\nabla\mrm{u}\cdot\nabla\delta\mrm{u}\,\dd x}
^{\ds{+\ \mbox{terms of order}\ \pars{\delta\mrm{u}}^{2}}}
\\[5mm] & =
\int_{\Omega}\bracks{2\nabla\cdot\pars{\delta\mrm{u}\nabla\mrm{u}} - 2\,\delta\mrm{u}\nabla^{2}\mrm{u}}\,\dd x
\\[5mm] & =
2\int_{\partial\Omega}\delta\mrm{u}\nabla\mrm{u}\cdot\dd\mathbf{S} -
2\int_{\Omega}\delta\mrm{u}\nabla^{2}\mrm{u}\,\dd x = 0
\end{align}
$\ds{\mrm{u}}$ is 'fixed' at $\ds{\partial\Omega}$ such that the first integral vanishes out and $\ds{\nabla^{2}\mrm{u} = 0}$
Poisson requires a constraint as $\ds{\Phi = \int_{\Omega}\rho\,\mrm{u}\,\dd x}$. It yields ( via Lagrange Multipliers ) to an additional term like $\ds{\mu\int_{\Omega}\delta\mrm{u}\,\rho\,\dd x}$ which leads to ( Poisson )
$\ds{\nabla^{2}\mrm{u} = -\mu\rho}$.