I imagine you have integrated $\,\,f(z)=\dfrac{z^{a-1}}{z^2+1},\,$ along the contour
$\,\gamma=\gamma_1\cup\gamma_2\cup\gamma_3\cup\gamma_4,\,$ where
$$
\gamma_1=[-R,-\varepsilon],\quad\gamma_2=\{\varepsilon\mathrm{e}^{i(\pi-t)}: t\in[0,\pi]\},\quad \gamma_3=[\varepsilon,R],\quad\gamma_4=\{R\mathrm{e}^{it}: t\in[0,\pi]\}.
$$
In such case
$$
z^{a-1}=\mathrm{e}^{(a-1)\log z},
$$
where $\log z$ is a branch of logarithm defined in
$$
\Omega=\mathrm{C}\setminus \{it: t\in (-\infty,0]\},
$$
as follows. If $z=r\mathrm{e}^{i\vartheta}$, then $\log z=\log r+i\vartheta$, with $$
\vartheta\in (-\pi/2,3\pi,2).
$$
So, in such case, Residue Theorem provides
$$
\int_\gamma f(z)\,dz=2\pi i\,\mathrm{Res}\left(\frac{z^{a-1}}{1+z^2},i\right)=2\pi i\cdot\frac{i^{a-1}}{2i}=\pi\mathrm{e}^{i(a-1)\pi/2}=-i\pi \mathrm{e}^{ia\pi/2}.
$$
Clearly
$$
\lim_{R\to\infty,\,\varepsilon\to 0}\int_{\gamma_1}f(z)\,dz=
\int_{-\infty}^0\frac{z^{a-1}}{z^2+1}=(-1)^{a-1}\int_0^\infty\frac{x^{a-1}\,dx}{1+x^2}=-\mathrm{e}^{ia\pi}\int_0^\infty\frac{x^{a-1}\,dx}{1+x^2},
$$
since $(-1)^{a-1}=\mathrm{e}^{i(a-1)\pi}=-\mathrm{e}^{ia\pi},\,$ and
$$
\lim_{R\to\infty,\,\varepsilon\to 0}\int_{\gamma_3}f(z)\,dz=
\int_0^{\infty}\frac{z^{a-1}}{z^2+1}=\int_0^\infty\frac{x^{a-1}\,dx}{1+x^2}.
$$
Meanwhile,
$\lim_{\varepsilon\to 0}\int_{\gamma_2}f(z)\,dz=0$ and
$\lim_{R\to\infty}\int_{\gamma_4}f(z)\,dz=0$. Hence, altogether
$$
(1-\mathrm{e}^{ia\pi})\int_{0}^\infty\frac{x^{a-1}\,dx}{1+x^2}=
\lim_{\varepsilon\to 0,\,\,R\to\infty}\int_\gamma f(z)\,dz=
2\pi i\,\mathrm{Res}\left(\frac{z^{a-1}}{1+z^2},i\right)
=-i\pi \mathrm{e}^{ia\pi/2}.
$$
Hence
$$
\int_{0}^\infty\frac{x^{a-1}\,dx}{1+x^2}=\frac{i\pi \mathrm{e}^{ia\pi/2}}{\mathrm{e}^{ia\pi}-1}=\frac{i\pi }{\mathrm{e}^{ia\pi/2}-\mathrm{e}^{-ia\pi/2}}=\frac{\pi}{2\sin (a\pi/2)}.
$$
\displaystyle
in titles please. – Did Jun 26 '17 at 16:50