By replacing the variable $v$ with $t:=u-7v$, we get
$$\int_{u=0}^{\pi}\int_{v=0}^{u/7}\ln(\sin(u-7v))\,du\,dv=
\frac{1}{7}\int_{t=0}^{\pi}\int_{u=t}^{\pi}\ln(\sin(t))\,du\,dt\\
=\frac{1}{7}\int_{t=0}^{\pi}\ln(\sin(t))(\pi-t)\,dt=\frac{I}{7}=\fbox{$-\frac{\pi^2\ln(2)}{14}$}$$
where $I=\int_{t=0}^{\pi}t\ln(\sin(t))\,dt=-\frac{\pi^2\ln(2)}{2}$.
In fact
$$I=\int_{t=0}^{\pi}\ln(\sin(t))(\pi-t)\,dt=\pi\int_{t=0}^{\pi}\ln(\sin(t))\,dt-I$$
which implies
$$I=\frac{\pi}{2}\int_{t=0}^{\pi}\ln(\sin(t))\,dt=\pi\int_{t=0}^{\pi/2}\ln(\sin(t))\,dt=-\frac{\pi^2\ln(2)}{2}$$
where in the last step we used Today a student asked me $\int \ln (\sin x) \, dx.$