Suppose $X$ and $Y$ are independent random variables with $X ~ \sim Pareto(\theta_x, c),\ Y \sim Pareto(\theta_y, c)$, where the p.d.f. of $Pareto(\theta, c)$ is
\begin{align} f(t) = \begin{cases} \frac{\theta c^\theta}{t^{\theta+1}} & t \geq c \\ 0 & \text{otherwise} \end{cases} \end{align}
and c.d.f. is
\begin{align} F(t) = \begin{cases} 1 - \frac{c^\theta}{t^\theta} & t \geq c \\ 0 & \text{otherwise} \end{cases} \end{align}
In this settings, I'd like to derive $P(XY > z)$ for some $z > c$.
Using independence of $X$ and $Y$,
\begin{align} P(XY > z) &= \int_{c}^\infty f_X(x) [1-F_Y(\frac{z}{x})] \ dx \\ &= \cfrac{\theta_x \theta_y c^{\theta_x+\theta_y}}{z^{\theta_y}} \int_{c}^\infty x^{\theta_y - \theta_x - 1} \ dx \end{align}
It looks like the integral part will diverge in some parameter settings.
My question is: why $P(XY > z)$ cannot be appropriately defined in such cases? My calculation is not correct at some point?