Just sort for powers of $x$:
$$
\Big( \sum_{n=0}^\infty c_n x^n \Big)^k = \\
\sum_{n_1=0}^\infty c_{n_1} x^{n_1} \sum_{n_2=0}^\infty c_{n_2} x^{n_2} \cdots \sum_{n_k=0}^\infty c_{n_k} x^{n_k} \\
= \sum_{n_1=0}^\infty \sum_{n_2=0}^\infty \cdots \sum_{n_k=0}^\infty c_{n_1} c_{n_2} \cdots c_{n_k} x^{n_1 + n_2 + \cdots + {n_k} }\\
= \sum_{n=0}^\infty \tilde{c}_n x^{n}$$
where the $\tilde{c}_n$ are sums over all products $c_{n_1} c_{n_2} \cdots c_{n_k}$ where ${n_1} + {n_2} + \cdots {n_k}$ matches the power $n$.
Now, for your slightly different notation, you can shift $n$ by $1$ in the sum ${n_1} + {n_2} + \cdots {n_k}$ and in the power of $x$. Then you write the power $x^{n-1}$ and correspondingly you must match ${n_1} + {n_2} + \cdots {n_k} = n-1$ or ${n_1} + {n_2} + \cdots {n_k} +1 = n$.