Looking through the literature dedicated to Bayes factors I noticed that given formulae are quite unclear from the point of Kolmogorov probability axioms.
E.g. consider the following expression from Wikipedia: $$ \Pr (M \mid D) = \dfrac{\Pr (D \mid M) \Pr(M)}{\Pr(D)} \ , $$ where $D$ stands for our sampled data, $M$ - for the model.
Well, $D$ is a random variable. But how should I interpret $M$? In applications, e.g. solving a hierarchial probabilistic model I can consider $\Pr (D \mid M)$ as the conditional density under given parameter. But the concept of $\Pr(M)$ seems rather misleading to me.
Are there any papers with formal definitions based on axiomatic approach?