I finished it so here's the full version if anyone is interested:
It is given that $\sum^{n}_{r=-1}{r^2}$ can be written in the form $pn^3 + qn^2 + rn +s$, where $p, q, r$ and $s$ are numbers. By setting $n = -1, 0, 1$ and $2$, obtain four equations that must be satisfied by $p, q, r$ and $s$ and hence show that:$$\sum_{r=0}^{n}{r^2} = \frac16n(2n+1)(n+1)$$ Given that $\sum^{n}_{r=-2}{r^3}$ can be written in the form $an^4+bn^3+cn^2+dn+e$, show similarly that: $$\sum^{n}_{r=0}{r^3}=\frac14n^2(n+1)^2$$
Substituting $n = -1,0,1,2$ into $\sum_{r=-1}^{n}{r^2}$ we get:
$$\sum_{r=-1}^{-1}{r^2} = 1 =-p+q-r+s$$
$$\sum_{r=-1}^{0}{r^2} = 1 = s$$
$$\sum_{r=-1}^{1}{r^2} = 2 = p+q+r+s$$
$$\sum_{r=-1}^{2}{r^2} = 6 = 8p+4q+2r+s$$
Now sub $s=1$ into our 3 equations:
$$1 = -p+q-r+1\Rightarrow 0 = -p+q-r$$
$$ 2 = p +q + r + 1 \Rightarrow 1 = p+q+r$$
$$ 6 = 8p+4q+2r+1 \Rightarrow 5 = 8p + 4q+ 2r$$
Now we obtain $q$:
$$0+1 = (-p+q-r)+(p+q+r)$$
$$1= (1-1)p+(1+1)q+(1-1)r \Rightarrow q = \frac{1}{2}$$
Now sub $q = \frac12$ into our 2 equations:
$$0 = -p+\frac12-r\Rightarrow \frac12 = p+r$$
$$ 5 = 8p+\frac42+2r \Rightarrow 3 = 8p + 2r$$
Now find $p$:
$$\frac12 = p + r \Rightarrow 1 = 2p + 2r$$
$$3 - 1 = (8p + 2r) - (2p + 2r)$$
$$2 = (8-2)p - (2-2)r\Rightarrow p = \frac26$$
Now sub $p$ to find $r$:
$$\frac12 = \frac26 + r \Rightarrow r = \frac16$$
We now know $p = \frac26,q = \frac12, r=\frac16, s = 1$:
$$\therefore \sum_{r=-1}^{n}{r^2} = \frac26n^3 + \frac12n^2 + \frac16n + 1$$
We define $\sum_{r=0}^{n}{r^2}$
$$\sum_{r=0}^{n}{r^2} = \sum_{r=-1}^{n}{r^2} - \sum_{r=-1}^{-1}{r^2} = \biggl( \frac26n^3 + \frac12n^2 + \frac16n + 1\biggr) - (-1)^2$$
$$\frac26n^3 + \frac12n^2 + \frac16n + 1 - 1 = \frac26n^3 + \frac12n^2 + \frac16n$$
Now simplify $\sum_{r=0}^{n}{r^2}$:
$$\frac26n^3 + \frac12n^2 + \frac16n = \frac16(2n^3+3n^2+n)$$
$$\frac16n(2n^2+3n+1) = \frac16n(2n+1)(n+1) $$
$$\therefore \sum_{r=0}^{n}{r^2} = \frac16n(2n+1)(n+1)$$
\
Substituting $n = -2,-1,0,1,2$into $\sum_{r=-1}^{n}{r^3}$ we get:
$$\sum_{r=-2}^{-2}{r^3} = -8 =16a-8b+4c-2d+e$$
$$\sum_{r=-2}^{-1}{r^3} = -9 = a-b+c-d+e$$
$$\sum_{r=-2}^{0}{r^3} = -9 = e$$
$$\sum_{r=-2}^{1}{r^3} = -8 = a+b+c+d+e$$
$$\sum_{r=-2}^{2}{r^3} = 0 =16a+8b+4c+2d+e$$
Now sub $e = -9$ into our $3$ equations:
$$-8 = 16a-8b+4c-2d-9\Rightarrow 1 = 16a-8b+4c-2d$$
$$-9 = a-b+c-d-9\Rightarrow 0 = a-b+c-d$$
$$-8 = a+b+c+d-9\Rightarrow 1 = a+b+c+d$$
$$0 =16a+8b+4c+2d - 9 \Rightarrow 9 = 16a+8b+4c+2d$$
Now we obtain $c$:
$$0+1 = (a-b+c-d)+(a+b+c+d)$$
$$1 = (1+1)a+(1-1)b+(1+1)c+(1-1)d \Rightarrow 2a = 1- 2c$$
$$1+9 = (16a-8b+4c-2d)+(16a+8b+4c+2d)$$
$$10 = (16+16)a+(8-8)b+(4+4)c+(2-2)d \Rightarrow 32a + 8c = 10$$
$$16(2a) + 8c = 16(1-2c) +8c = -24c +16 = 10 \Rightarrow c = \frac14$$
Now sub in $c = \frac14$ to obtain $a$:
$$2a = 1 - 2(\frac14) \Rightarrow a = \frac{1}{2}$$
Now sub $c =\frac14, a= \frac14$ into our $2$ equations:
$$0 = \frac14-b+\frac14-d \Rightarrow \frac12 = b + d$$
$$1 = 16(\frac14)-8b+4(\frac14)-2d \Rightarrow 4 = 8b + 2d$$
Now we obtain $b$:
$$4-2(\frac12) = 8b + 2d -2(b+d)$$
$$3 = (8-2)b + (2-2)d \Rightarrow b = \frac12$$
Now sub in $b = \frac12$ to obtain $d$:
$$4 = 8(\frac12) + 2d \Rightarrow 0 = d$$
We now know $a= \frac14, b = \frac12, c = \frac14, d = 0, e = -9$:
$$\therefore \sum^{n}_{r=-2}{r^3}= \frac14n^4 + \frac12n^3 + \frac14n^2 -9$$
We define $\sum^{n}_{r=0}{r^3}$:
$$\sum^{n}_{r=0}{r^3}=\sum^{n}_{r=-2}{r^3} - \sum^{-2}_{r=-2}{r^3}=\frac14n^4 +\frac12n^3 + \frac14n^2 -9 -(-9)$$
$$\frac14n^4 +\frac12n^3 + \frac14n^2 = \frac14 (n^4+2n^3+n^2)$$
$$\frac14n^2(n^2+2n+1) = \frac14n^2(n+1)^2$$
$$\therefore \sum^{n}_{r=0}{r^3}= \frac14n^2(n+1)^2$$
(thanks for all the answers and help)