We consider a following quantity: \begin{eqnarray} {\mathcal I}^{(p,q)}_r(\xi,t) := \int\limits_\xi^t \frac{[\log(\frac{t}{\eta})]^p}{p!} \cdot \frac{[\log(\frac{\eta}{\xi})]^q}{q!} \cdot \frac{Li_r(\eta)}{\eta} d\eta \end{eqnarray} where $p$,$q$ and $r$ are non-negative integers and $0\le \xi \le t \le 1$ and $L_r(\eta) := \sum\limits_{m=1}^\infty \eta^m/m^r$ is the poly-logarithm.
By using integration by parts we found that the quantities above satisfy following recurrence relations: \begin{eqnarray} {\mathcal I}^{(p,q-p)}_{W-q} &=& 1_{2 p \ge q} \cdot \sum\limits_{j=0}^{q-p-1} \binom{q-p}{j} (-1)^j {\mathcal I}^{(2p-q+j,q-p-j)}_{W-p} + 1_{2p < q}\sum\limits_{j=1}^p \binom{p}{j} (-1)^j {\mathcal I}^{(j,q-p-j)}_{W-q+p} + \\ &&1_{2 p \ge q} \cdot (-1)^{q-p}\left(Li_{W+1}(t) - \sum\limits_{l=1}^{p+1} Li_{W-p+l}(\xi) \cdot \frac{[\log(\frac{t}{\xi})]^{p+1-l}}{(p+1-l)!}\right)-\\ &&1_{2p < q} \cdot (-1)^{q-p}\left(Li_{W+1}(\xi)-\sum\limits_{l=1}^{q-p+1} Li_{W-q+p+l}(t) \frac{\log(\frac{\xi}{t})]^{q-p+1-l}}{(q-p+1-l)!}\right) \end{eqnarray} for $0\le p \le q \le W$. This is a system of $\binom{W+2}{2}$ linear equations for all the unknown quantities $\left\{ {\mathcal I}^{(p,q-p)}_{W-q} \right\}_{0\le p \le q \le W}$ which for a given $W \ge1$ is straightforward to solve on any CAS. For example we have the following: \begin{eqnarray} {\mathcal I}^{(1,2)}_1&=&\frac{1}{2} \text{Li}_3(t) \log ^2\left(\frac{\xi }{t}\right)+2 \text{Li}_4(t) \log \left(\frac{\xi }{t}\right)-\text{Li}_4(\xi ) \log \left(\frac{t}{\xi }\right)+3 \text{Li}_5(t)-3 \text{Li}_5(\xi )\\ {\mathcal I}^{(1,3)}_2&=& -\frac{1}{6} \text{Li}_4(t) \log ^3\left(\frac{\xi }{t}\right)-\text{Li}_5(t) \log ^2\left(\frac{\xi }{t}\right)-3 \text{Li}_6(t) \log \left(\frac{\xi }{t}\right)+\text{Li}_6(\xi ) \log \left(\frac{t}{\xi }\right)-4 \text{Li}_7(t)+4 \text{Li}_7(\xi )\\ {\mathcal I}^{(1,4)}_3 &=& \frac{1}{24} \text{Li}_5(t) \log ^4\left(\frac{\xi }{t}\right)+\frac{1}{3} \text{Li}_6(t) \log ^3\left(\frac{\xi }{t}\right)+\frac{3}{2} \text{Li}_7(t) \log ^2\left(\frac{\xi }{t}\right)+4 \text{Li}_8(t) \log \left(\frac{\xi }{t}\right)-\text{Li}_8(\xi ) \log \left(\frac{t}{\xi }\right)+5 \text{Li}_9(t)-5 \text{Li}_9(\xi ) \end{eqnarray} Now, my question is can we actually find a closed form expression for the quantities in question or otherwise do we always have to resort to CAS to solve the equations in question?