Let $X$ be an exponential random variable with $\lambda =5$ and $Y$ a uniformly distributed random variable on $(-3,X)$. Find $\mathbb E(Y)$.
My attempt:
$$\mathbb E(Y)= \mathbb E(\mathbb E(Y|X))$$
$$\mathbb E(Y|X) = \int^{x}_{-3} y \frac{1}{x+3} dy = \frac{x^2+9}{2(x+3)}$$
$$ \mathbb E(\mathbb E(Y|X))= \int^{\infty}_{0} \frac{x^2+9}{2(x+3)} 5 e^{-5x} \, dx$$