So i have this limit:
$$\lim_{n\rightarrow \infty}\left(\frac{1}{n-n\sin^2(\frac{\pi}{4n})}+\frac{1}{n-n\sin^2(\frac{2\pi}{4n})}+ \cdots +\frac{1}{n-n\sin^2(\frac{n\pi}{4n})}\right)$$
So i translated it into this:
$$\lim_{n\rightarrow \infty} \left(\frac{1}{n} \sum_{k=0}^{n}\frac{1}{1-\sin^2(\frac{k\pi}{4n})}\right)$$
So i have an idea to use Riemann definition of integral to somehow translate it to integrals.
But i don't know how to script it.
Any help would be appreciated.