1

So i have this limit:

$$\lim_{n\rightarrow \infty}\left(\frac{1}{n-n\sin^2(\frac{\pi}{4n})}+\frac{1}{n-n\sin^2(\frac{2\pi}{4n})}+ \cdots +\frac{1}{n-n\sin^2(\frac{n\pi}{4n})}\right)$$

So i translated it into this:

$$\lim_{n\rightarrow \infty} \left(\frac{1}{n} \sum_{k=0}^{n}\frac{1}{1-\sin^2(\frac{k\pi}{4n})}\right)$$

So i have an idea to use Riemann definition of integral to somehow translate it to integrals.

But i don't know how to script it.

Any help would be appreciated.

2 Answers2

2

So in fact you got

$$\lim_{n\rightarrow \infty} \left(\frac{1}{n} \sum_{k=0}^{n}\frac{1}{1-\sin^2\frac{k\pi}{4n}}\right)=\lim_{n\rightarrow \infty} \left(\frac{1}{n} \sum_{k=0}^{n}\frac{1}{\cos^2\frac{k\pi}{4n}}\right)=\int_0^{\pi/4}\frac{dx}{\cos^2x}=1$$

DonAntonio
  • 211,718
  • 17
  • 136
  • 287
0

Like The limit of a sum $\sum_{k=1}^n \frac{n}{n^2+k^2}$,

$$\lim_{n\rightarrow \infty} \left(\frac{1}{n} \sum_{k=0}^{n}\frac{1}{1-\sin^2(\frac{k\pi}{4n})}\right)=\int_0^1\dfrac{dx}{1-\sin^2\dfrac{x\pi}4}=\int_0^1\sec^2\dfrac{\pi x}4dx=?$$