$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
&\int_{0}^{\pi}\int_{0}^{x/8}\ln\pars{\sin\pars{x - 8y}}\,\dd y\,\dd x
\,\,\,\stackrel{y\ \mapsto\ x/8 - y}{=}\,\,\,
\int_{0}^{\pi}\int_{0}^{x/8}\ln\pars{\sin\pars{x - 8\bracks{{x \over 8} - y}}}
\,\dd y\,\dd x
\\[5mm] = &\
\int_{0}^{\pi}\int_{0}^{x/8}\ln\pars{\sin\pars{8y}}\,\dd y\,\dd x
\,\,\,\stackrel{8y\ \mapsto\ y}{=}\,\,\,
{1 \over 8}\int_{0}^{\pi}\int_{0}^{x}\ln\pars{\sin\pars{y}}\,\dd y\,\dd x
\\[5mm] = &\
{1 \over 8}\int_{0}^{\pi}\ln\pars{\sin\pars{y}}\int_{y}^{\pi}\,\dd x\,\dd y =
{1 \over 8}\int_{0}^{\pi}\ln\pars{\sin\pars{y}}\pars{\pi - y}\,\dd y
\\[5mm] = &\
{1 \over 8}\int_{-\pi/2}^{\pi/2}\ln\pars{\cos\pars{y}}
\pars{{\pi \over 2} - y}\,\dd y =
{1 \over 8}\,\pi\int_{0}^{\pi/2}\ln\pars{\cos\pars{y}}\,\dd y
\\[5mm] = &\,\,\,
\overbrace{\left.{1 \over 8}\,\pi\,\Re\int_{\theta = 0}^{\theta = \pi/2}
\ln\pars{1 + z^{2} \over 2z}\,{\dd z \over \ic z}
\right\vert_{\ z\ =\ \exp\pars{\ic\theta}}}
^{\ds{\ln\,\,\, \mbox{is its}\ Principal\ Branch}}\ =\
\left.{1 \over 8}\,\pi\
\Im\int_{\theta = 0}^{\theta = \pi/2}
\ln\pars{1 + z^{2} \over 2z}\,{\dd z \over z}
\right\vert_{\ z\ =\ \exp\pars{\ic\theta}}
\\[1cm] \stackrel{\mrm{as}\ \epsilon\ \to\ 0^{+}}{\sim} &\
-\,{1 \over 8}\,\pi\,\Im\int_{1}^{\epsilon}
\overbrace{\ln\pars{-\,{1 - y^{2} \over 2y}\,\ic}}
^{\ds{\ln\pars{1 - y^{2} \over 2y} - {\pi \over 2}\,\ic}}\
\,{\ic\,\dd y \over \ic y} -
{1 \over 8}\,\pi\,\
\overbrace{\Im\int_{\pi/2}^{0}
\ln\pars{{1 \over 2\epsilon}\,\expo{-\ic\theta}}\,{\epsilon\expo{\ic\theta}\ic\,\dd\theta \over \epsilon\expo{\ic\theta}}}
^{\ds{\int_{\pi/2}^{0}\ln\pars{1 \over 2\epsilon}\,\dd\theta}}
\\[2mm] &\ -\
\underbrace{{1 \over 8}\,\pi\,\Im\int_{\epsilon}^{1}
\ln\pars{1 + x^{2} \over 2x}\,{\dd x \over x}}_{\ds{=\ 0}}
\\[1cm] = &\
-\,{1 \over 8}\,\pi\pars{-\,{\pi \over 2}}\ln\pars{\epsilon} -
{1 \over 8}\,\pi\pars{-\,{\pi \over 2}}
\bracks{\vphantom{\large A}-\ln\pars{2} - \ln\pars{\epsilon}}
\\[5mm] \stackrel{\mrm{as}\ \epsilon\ \to\ 0^{+}}{\to}\,\,\,&
\bbx{-\,{1 \over 16}\,\pi^{2}\ln\pars{2}}
\end{align}