In the Ivić, Aleksandar (2013). The theory of Hardy's Z-function, page 16 the Hardy function is defined as
$$\begin{align} Z(t) &:= \zeta \left(\frac{1}{2}+it\right)\left(\chi\left(\frac{1}{2}+it\right) \right)^{-1/2}\\[2ex] &= \zeta \left(\frac{1}{2}+it\right)\left( \frac{\Gamma\left(\frac{1}{2}\,\left(1 - \left(\frac{1}{2}+it\right)\right) \right)}{\Gamma \left( \frac{1}{2}\,\left(\frac{1}{2}+it \right)\right)}\,\pi^{\left(\frac{1}{2}+it\right)-\frac{1}{2}} \right)^{-1/2}\\[2ex] &= \zeta \left(\frac{1}{2}+it\right)\left( \frac{\Gamma\left(\frac{1}{4} - \frac{it}{2} \right)}{\Gamma \left( \frac{1}{4}+\frac{it}{2}\right)}\,\pi^{it} \right)^{-1/2}\\[2ex] &=\zeta \left(\frac{1}{2}+it\right)\left( \frac{\Gamma\left(\frac{1}{4} - \frac{it}{2} \right)}{\Gamma \left( \frac{1}{4}+\frac{it}{2}\right)} \right)^{-1/2}\; \,\pi^{\frac{-it}{2}}\\[2ex] &=\zeta \left(\frac{1}{2}+it\right)\color{blue}{ \frac{\Gamma^{1/2} \left( \frac{1}{4}+\frac{it}{2}\right)}{\Gamma^{1/2}\left(\frac{1}{4} - \frac{it}{2} \right)}} \;\pi^{\frac{-it}{2}} \end{align}$$
The Hardy function is the same as the Riemann-Siegel Z function as the Wikipedia entry indicates. The definition in the Wikpedia entry is
$$ \begin{align} Z(t)&=\zeta\left(\frac{1}{2}+it\right)\; e^{i\theta(t)}\\[2ex] &=\zeta\left(\frac{1}{2}+it\right)\; e^{i\,\left[ \Im\left(\ln\Gamma\left(\frac{1}{4}+\frac{it}{2} \right) \right)-\frac{t}{2}\ln(\pi) \right]}\\[2ex] &=\zeta\left(\frac{1}{2}+it\right)\quad \color{blue}{e^{i \;\text{arg}\left(\Gamma(\frac{1}{4}+\frac{it}{2})\right)}}\quad \pi^{\frac{-it}{2}} \end{align}$$
So the question is (provided I haven't messed up the algebra), How do I see that
$$ \frac{\Gamma^{1/2} \left( \frac{1}{4}+\frac{it}{2}\right)}{\Gamma^{1/2}\left(\frac{1}{4} - \frac{it}{2} \right)}=\;e^{i \;\text{arg}\left(\Gamma(\frac{1}{4}+\frac{it}{2})\right)}$$
?
I see that the argument of $z = x + i y=\rho\ e^{i\theta}$
$$\theta = \arg(z)= \frac{1}{i}\log\sqrt{\frac{z}{\bar z}}=\frac{\log z - \log \bar z}{2i}$$
so we can modify
$$\frac{\Gamma^{1/2} \left( \frac{1}{4}+\frac{it}{2}\right)}{\Gamma^{1/2}\left(\frac{1}{4} - \frac{it}{2} \right)}= \sqrt{\frac{\Gamma \left( \frac{1}{4}+\frac{it}{2}\right)}{\Gamma\left(\frac{1}{4} - \frac{it}{2} \right)}}$$
but is $\Gamma\left(\frac{1}{4} - \frac{it}{2}\right)$ the complex conjugate of $\Gamma\left(\frac{1}{4} + \frac{it}{2}\right)$?