Let $\mathrm{X}$ and $\mathrm{(X_n)_{n\in\mathbb{N}}}$ be a sequence of random variables such that $\mathrm{X_n}$ converges to $\mathrm{X}$ in probability. Prove that there is a subsequence $\mathcal({n_k})_{k\in\mathbb{N}}$ such that $\mathrm{X_{n_{k}}}$ converges almost surely to $\mathrm{X}$.
My thoughts so far: If I let $\mathcal{n_k}$ be such that $\forall$ $\epsilon$ $\gt$ 0: P($\vert$$\mathrm{X_{n_{k}}}$ - $\mathrm{X}$$\vert$$\ge$$\epsilon$)$\le$$\frac{1}{k^2}$, then the assumption would hold with the following lemma: If $\sum_{n=1}^\infty$P($\vert$$\mathrm{X_n}$-$\mathrm{X}$$\vert$$\gt$$\epsilon$)$\lt$$\infty$ for all $\epsilon$$\gt$0, then $\mathrm{X_n}$ converges to $\mathrm{X}$ almost surely.
For some reason I am not entirely convinced by this. Is there another way to prove the assumption.