How does one evaluate the second derivative of the determinant of a square matrix?
Jacobi's formula tells us how to evaluate the first derivative but I can't find anything for the second. This is my attempt:
We can start using the partial derivative formulation of Jacobi's formula, assuming A is invertible: \begin{equation}\frac{\partial}{\partial \alpha}\det A = (\det A) \text{tr}\left( A^{-1} \frac{\partial}{\partial \alpha} A \right)\end{equation} Taking a second derivative: \begin{equation}\frac{\partial^2}{\partial \alpha^2}\det A = \frac{\partial}{\partial \alpha}\left[(\det A) \text{tr}\left( A^{-1} \frac{\partial}{\partial \alpha} A \right)\right]\end{equation} Applying product rule: \begin{equation}= \frac{\partial}{\partial \alpha}(\det A) \cdot \text{tr}\left( A^{-1} \frac{\partial}{\partial \alpha} A \right) + (\det A) \frac{\partial}{\partial \alpha} \text{tr}\left( A^{-1} \frac{\partial}{\partial \alpha} A \right)\end{equation} Replacing $\frac{\partial}{\partial\alpha}\det A$ with Jacobi's formula: \begin{equation}= (\det A) \text{tr}\left( A^{-1} \frac{\partial}{\partial \alpha} A \right) \cdot \text{tr}\left( A^{-1} \frac{\partial}{\partial \alpha} A \right) +(\det A) \text{tr}\left( \frac{\partial}{\partial \alpha}\left(A^{-1} \frac{\partial}{\partial \alpha} A \right)\right)\end{equation} Factoring out $\det(A)$: \begin{equation}= (\det A) \left[\text{tr}^2\left( A^{-1} \frac{\partial}{\partial \alpha} A \right) + \text{tr}\left( \frac{\partial}{\partial \alpha}\left(A^{-1} \frac{\partial}{\partial \alpha} A \right)\right)\right]\end{equation} Another product rule: \begin{equation}= (\det A) \left[\text{tr}^2\left( A^{-1} \frac{\partial}{\partial \alpha} A \right) + \text{tr}\left(\frac{\partial}{\partial \alpha}A^{-1} \frac{\partial}{\partial \alpha} A + A^{-1} \frac{\partial^2}{\partial \alpha^2} A \right)\right]\end{equation} Finally, using $A_{\alpha}$ to denote the partial of A wrt to $\alpha$ we have \begin{equation}\frac{\partial^2}{\partial \alpha^2}\det A= \det(A) \left[\text{tr}^2\left( A^{-1} A_{\alpha} \right) + \text{tr}\left(A^{-1}_{\alpha} A_{\alpha}\right) + \text{tr} \left( A^{-1} A_{\alpha^2} \right)\right]\end{equation} The second trace actually reduces to N, for an NxN matrix: \begin{equation}\text{tr}\left(A^{-1}_{\alpha} A_{\alpha}\right)=\text{tr}(I)\end{equation} \begin{equation}=\sum_{diagonals}1\end{equation} \begin{equation}=N\end{equation}
\begin{equation}\therefore\frac{\partial^2}{\partial \alpha^2}\det A= \det(A) \left[\text{tr}^2\left( A^{-1} A_{\alpha} \right) + \text{tr} \left( A^{-1} A_{\alpha^2} \right)+N\right]\end{equation}
I'm not overly confident with the matrix calculus, but the result is nice enough to seem plausible. Is there another method, or is this proof valid? Thanks!