Prove that the union of two subspaces of $V$ is a subspace of $V$ if and only if one of the subspaces of $v$ is contained in the other.
May someone please validate this proof:
Let $V_1,V_2$ be two subspaces of $V$. Suppose $V_1 \cup V_2$ is a subspace of $V$. Then if $x_1 \in V_1$ and $x_2 \in V_2$ then we must have $x_1 \in V_1 \cup V_2$ and $x_2 \in V_1 \cup V_2$ so that we must have $x_1+x_2 \in V_1 \cup V_2$. But this by definition means $x_1+x_2 \in V_1$ or $x_1+x_2 \in V_2$. Either way, by existence of additive inverses and closure properties for subspaces we have:
$$(x_1+x_2)+(-x_1) \in V_1$$
Or
$$(x_1+x_2)+(-x_2) \in V_2$$
By associative/commutative properties we have:
$x_2 \in V_1, \text{or} ,x_2 \in V_1$
Edit:
Thus we have shown if $x_1 \in V_1$ and $x_2 \in V_2$ then $x_1 \in V_2$ or $x_2 \in V_1$. If $x_1 \in V_2$ for all $x_1 \in V_1$ then we have $V_1 \subseteq V_2$. If $x_2 \in V_1$ for all $x_2 \in V_2$ then $V_2 \subseteq V_1$. In either case we see one subspace is a subset of the other.