Well, we can look at the Laplace transform of the function:
$$\text{f}\left(x\right):=\frac{1-\cos\left(\text{a}x\right)}{x}\cdot\cos\left(\text{b}x\right)\tag1$$
We get:
$$\text{F}\left(\text{s}\right):=\mathscr{L}_x\left[\frac{1-\cos\left(\text{a}x\right)}{x}\cdot\cos\left(\text{b}x\right)\right]_{\left(\text{s}\right)}:=\int_0^\infty\frac{1-\cos\left(\text{a}x\right)}{x}\cdot\cos\left(\text{b}x\right)\cdot e^{-\text{s}x}\space\text{d}x\tag2$$
Now, using the 'frequency-domain integration' property of the laplace transform:
$$\text{F}\left(\text{s}\right)=\int_\text{s}^\infty\mathscr{L}_x\left[\left(1-\cos\left(\text{a}x\right)\right)\cdot\cos\left(\text{b}x\right)\right]_{\left(\sigma\right)}\space\text{d}\sigma=$$
$$\int_\text{s}^\infty\left(\mathscr{L}_x\left[\cos\left(\text{b}x\right)\right]_{\left(\sigma\right)}-\mathscr{L}_x\left[\cos\left(\text{a}x\right)\cdot\cos\left(\text{b}x\right)\right]_{\left(\sigma\right)}\right)\space\text{d}\sigma\tag3$$
Use the Laplace transform of the cosine function:
$$\text{F}\left(\text{s}\right)=\int_\text{s}^\infty\left(\frac{\sigma}{\sigma^2+\text{b}^2}-\mathscr{L}_x\left[\cos\left(\text{a}x\right)\cdot\cos\left(\text{b}x\right)\right]_{\left(\sigma\right)}\right)\space\text{d}\sigma\tag4$$
Use:
$$\cos\left(\text{a}x\right)\cdot\cos\left(\text{b}x\right)=\frac{\cos\left(\left(\text{a}-\text{b}\right)x\right)+\cos\left(\left(\text{a}+\text{b}\right)x\right)}{2}\tag5$$
So, for the Laplace transform we end up with:
$$\text{F}\left(\text{s}\right)=\int_\text{s}^\infty\left(\frac{\sigma}{\sigma^2+\text{b}^2}-\frac{1}{2}\cdot\left(\frac{\sigma}{\sigma^2+\left(\text{a}-\text{b}\right)^2}+\frac{\sigma}{\sigma^2+\left(\text{a}+\text{b}\right)^2}\right)\right)\space\text{d}\sigma\tag6$$
Find: $\text{s}=0$.
For the indefinite general integral we know:
$$\text{y}\left(x,\text{n}\right):=\int\frac{x}{x^2+\text{n}^2}\space\text{d}x=\frac{\ln\left|x^2+\text{n}^2\right|}{2}+\text{C}\tag7$$
So, for $\text{F}\left(\text{s}\right)$ at $\text{s}=0$ we get:
$$\text{F}\left(0\right)=\lim_{\text{p}\to\infty}\space\left[\frac{\ln\left|\sigma^2+\text{b}^2\right|}{2}-\frac{1}{2}\cdot\left(\frac{\ln\left|\sigma^2+\left(\text{a}-\text{b}\right)^2\right|}{2}+\frac{\ln\left|\sigma^2+\left(\text{a}+\text{b}\right)^2\right|}{2}\right)\right]_0^\text{p}\tag8$$
- When $\sigma=0$:
$$\frac{\ln\left|0^2+\text{b}^2\right|}{2}-\frac{1}{2}\cdot\left(\frac{\ln\left|0^2+\left(\text{a}-\text{b}\right)^2\right|}{2}+\frac{\ln\left|0^2+\left(\text{a}+\text{b}\right)^2\right|}{2}\right)=$$
$$\frac{\ln\left|\text{b}^2\right|}{2}-\frac{1}{2}\cdot\left(\frac{\ln\left|\left(\text{a}-\text{b}\right)^2\right|}{2}+\frac{\ln\left|\left(\text{a}+\text{b}\right)^2\right|}{2}\right)\tag9$$
- Try to prove that:
$$\lim_{\text{p}\to\infty}\space\left(\frac{\ln\left|\text{p}^2+\text{b}^2\right|}{2}-\frac{1}{2}\cdot\left(\frac{\ln\left|\text{p}^2+\left(\text{a}-\text{b}\right)^2\right|}{2}+\frac{\ln\left|\text{p}^2+\left(\text{a}+\text{b}\right)^2\right|}{2}\right)\right)=0\tag{10}$$
End, so we end up with:
$$\text{F}\left(0\right)=-\left(\frac{\ln\left|\text{b}^2\right|}{2}-\frac{1}{2}\cdot\left(\frac{\ln\left|\left(\text{a}-\text{b}\right)^2\right|}{2}+\frac{\ln\left|\left(\text{a}+\text{b}\right)^2\right|}{2}\right)\right)=\ln\left(\sqrt{\left|\frac{\text{a}^2}{\text{b}^2}-1\right|}\right)\tag{11}$$
$$F(a,b,c) = \int^ \infty_0 \frac{(1-\cos(ax))\cos(bx) e^{-cx}}{x},dx$$
Then differentiate with respect to $c$. The resultant integral will be some fractions because you are evaluating the Laplace of $\cos(ax)$. The result follow by integration to get the ln.
– Zaid Alyafeai Jun 16 '17 at 11:47