If $n$ and $m$ are positive and integer numbers prove that
$$\int_0^1 x^m \cdot(1-x)^ndx = \int _0^1 x^n \cdot(1-x)^mdx.$$
I have tried to substitute $u=1-x$ but I got nowhere.
If $n$ and $m$ are positive and integer numbers prove that
$$\int_0^1 x^m \cdot(1-x)^ndx = \int _0^1 x^n \cdot(1-x)^mdx.$$
I have tried to substitute $u=1-x$ but I got nowhere.
The substitution is correct.
Let $u=1-x$. Then
\begin{align} \int_0^1x^m(1-x)^ndx&=\int_1^0(1-u)^mu^n(-1)du\\ &=\int_0^1(1-u)^mu^ndu\\ &=\int_0^1x^n(1-x)^mdx\\ \end{align}
Your substitution is correct:
$$\begin{align}\int\limits_0^1 x^m (1-x)^n \,\mathrm d\,x ~&=~ \int\limits_{1}^{0} (1-u)^m u^n (-\mathrm d u) &&[x\gets 1-u, \mathrm dx\gets (-\mathrm du)] \\ &= \int\limits_0^1 (1-u)^mu^n\,\mathrm d\,u \\ &=\int\limits_0^1 (1-x)^mx^n\,\mathrm d\,x && \text{alpha replacement}\end{align}$$
Alternatively: Note the Beta and Gamma functions are related as follows: $$B(x,y)=\int_0^1t^{x-1}(1-t)^{y-1}dt=\frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}=\frac{(x-1)!(y-1)!}{(x+y-1)!}.$$
Hence: $$B(m+1,n+1)=\int_0^1x^m(1-x)^ndx=\frac{m!\cdot n!}{(m+n+1)!}=$$ $$\frac{n!\cdot m!}{(n+m+1)!}=\int_0^1x^n(1-x)^mdx=B(n+1,m+1).$$