Can anyone prove this using only linear combination/matrix multiplication ?
Let $A$ and $B$ be $2 X 2$ matrices such that $AB = I$. Prove that $BA = I.$
$\left[\begin{matrix} a&b\\c&d \end{matrix}\right]\left[\begin{matrix} e&f\\g&h \end{matrix}\right]=\left[\begin{matrix} 1&0\\0&1 \end{matrix}\right]$ is of no use as I end up with so many unknowns
$AB=\left[\begin{matrix} A_{first row}B_{first column}&A_{first row}B_{second column}\\A_{second row}B_{first column}&A_{second row}B_{second column} \end{matrix}\right]$ is also not helping