I have tried calculating the integral:
$$ \int_0^a\frac{\sqrt x}{\sqrt x + \sqrt{a-x}}\mathrm{d}x $$
but getting rid of the square roots from the problem is like impossible for me.
I have tried calculating the integral:
$$ \int_0^a\frac{\sqrt x}{\sqrt x + \sqrt{a-x}}\mathrm{d}x $$
but getting rid of the square roots from the problem is like impossible for me.
Let $u=a-x$. Then
$$\int_0^a\frac{\sqrt{x}}{\sqrt{x}+\sqrt{a-x}}dx=\int_a^0\frac{-\sqrt{a-u}}{\sqrt{a-u}+\sqrt{u}}du=\int_0^a\frac{\sqrt{a-x}}{\sqrt{x}+\sqrt{a-x}}dx$$
So
$$2\int_0^a\frac{\sqrt{x}}{\sqrt{x}+\sqrt{a-x}}dx=\int_0^a\frac{\sqrt{x}}{\sqrt{x}+\sqrt{a-x}}dx+\int_0^a\frac{\sqrt{a-x}}{\sqrt{x}+\sqrt{a-x}}dx=\int_0^adx$$
Hint: write your Integrand in the form $$\frac{1}{1+\sqrt{\frac{a-x}{x}}}$$ and set $$t=\sqrt{\frac{a-x}{x}}$$ if you do that then you will get the indefinite integral $$-a\int\frac{2t}{(1+t)(t^2+1)}dt$$