On your question whether or not there exists a closed-form formula for the number of bipartite graphs with parts of size $m$ and $n$ (denoted by $|B_u(m,n)|$ below), my coauthor and I proved the following formulas for $m = 2$ and $m = 3$ in an upcoming paper. $|B_u(2,n)|$ corresponds to the integer sequence A002623, i.e., 1, 3, 7, 13, 22, 34, 50, 70, 95,..., and $|B_u(3,n)|$ corresponds to the integer sequence A002727, i.e., 1, 4, 13, 36, 87, 190, 386, 734, 1324, 2284,... in Sloane's classification of integer sequences. Generalizing these closed-form formulas for $m = 4,5,6,...$ remains an open problem to the best of my knowledge.
$$|B_u(2,n)|\!=\! \frac{2n^{3}+15n^{2} + 34n + 22.5 + 1.5\left ( -1 \right )^{n}}{24}, n=0,1,2,...$$
$\,$
$\!\!\!\!\!\!\!|B_{u}\left( 3,n \right)|\! =
\left\{\begin{matrix}
\frac{1}{6}\left [ \binom{n+7}{7}\! + \frac{3\left ( n+4 \right )\left ( 2n^{4}+32n^{3}+172n^{2} + 352n
+ 15\left ( -1 \right )^{n} +225 \right )}{960} +\! \frac{2(n^{3}+12n^{2}+45n+54)}{54} \right ] &\!\!\!\!\!\!\text{if}\, n \bmod\!\!
\text{ } 3 = 0, \\
\\
\frac{1}{6}\left [ \binom{n+7}{7}\! + \frac{3\left ( n+4 \right )\left ( 2n^{4}+32n^{3}+172n^{2} + 352n
+ 15\left ( -1 \right )^{n} +225 \right )}{960} +\! \frac{2(n^{3}+12n^{2}+45n+50)}{54} \right ] &\!\!\!\!\!\!\!\text{ if}\, n \bmod\!\!
\text{ } 3 = 1, \\
\\
\frac{1}{6}\left [ \binom{n+7}{7}\! + \frac{3\left ( n+4 \right )\left ( 2n^{4}+32n^{3}+172n^{2} + 352n
+ 15\left ( -1 \right )^{n} +225 \right )}{960} +\! \frac{2(n^{3}+12n^{2}+39n+28)}{54} \right ] &\!\!\!\!\!\!\!\!\! \text{if}\, n \bmod\!\!
\text{ } 3 = 2. \!\!\!\! \end{matrix}\right.
$
Ref: Abdullah Atmaca and A. Yavuz Oruc. "On The Size Of Two Families Of Unlabeled Bipartite Graphs." AKCE International Journal of Graphs and Combinatorics. To appear.