Update 2018/4/18: I've found a book in which the definition 5) is discussed. See Topology, Calculus and Approximation by Vilmos Komornik, published by Springer-Verlag , page 98, Lemma 4.1.
Original Question:
I've come across "Carathéodory Derivative" in my textbook, which is,
Definition 1) Let $f:\mathbb{R}\to \mathbb{R},\quad t\mapsto f(t)$ be a function, $a\in \mathbb{R}.$ Then if there exists a map $\varphi:\mathbb{R}\to \mathbb{R}, \quad t\mapsto \varphi(t)$, which satisfies $$1) \quad f(x)-f(a)=\varphi(x)\cdot(x-a),\forall x\in \mathbb{R};$$ $$2) \quad \text{$\varphi $ is continuous at the point a} ,$$ then we call $\varphi(a)$ the derivative of $f$ at point $a$.
And compared with the traditional definition of derivative:
Definition 2) Let $f:\mathbb{R}\to \mathbb{R},\quad t\mapsto f(t)$ be a function, $a\in \mathbb{R}.$ Then if the limit $$\lim_{x\to a}{f(x)-f(a)\over{x-a}}$$ exists, then the value of this limit is called the derivative of $f$ at point $a$.
I can prove that (it's not difficult) these two definitions above are equivalent to each other. But when I look at the high-dimensional condition, things get complicated.
Definition 3) Let $f:\mathbb{R}^n\to \mathbb{R}^m,\quad t\mapsto f(t)$ be a multivariate function, $a\in \mathbb{R}^n,$ Then if there exists a map $\varphi:\mathbb{R}\to M_{m\times n}(\mathbb{R}),\quad t\mapsto \varphi(t)$, which satisfies $$1) \quad f(x)-f(a)=\varphi(x)\cdot(x-a),\forall x\in \mathbb{R}^n;$$ $$2) \quad \text{$\varphi $ is continuous at the point a} ,$$ then we call $\varphi(a)$ the derivative of $f$ at point $a$.
And consider the traditional definition of derivative
Definition 4) Let $f:\mathbb{R}^n\to \mathbb{R}^m,\quad t\mapsto f(t)$ be a multivariate function, $a\in \mathbb{R}^n.$ Then if there exists a matrix $A\in M_{m\times n}(\mathbb{R}),$ such that $$\lim_{x\to a}{||f(x)-f(a)-A\cdot (x-a)||\over{||x-a||}}=0,$$ then matrix $A$ is called the derivative of $f$ at point $a$.
Question: I expect that definition 3) is equivalent to definition 4), but I can only prove that $\mathrm{def}\ 3)\Rightarrow \mathrm{def}\ 4).$ I doubt whether $\mathrm{def}\ 4)\Rightarrow \mathrm{def}\ 3)$ is correct. Any help is appreciated.
P.S. Now I am able to do some generalization to definition 3).
Definition 5) Let $E,F$ be two Banach spaces, $a\in E.$ $\mathcal{L}(E;F)$ be the set of continuous linear map $E\to F,$ then consider function $f:E\to F, \quad t\mapsto f(t),$ then if there exists a map $\varphi:E\to \mathcal{L}(E;F), \ t\mapsto \varphi(t),$ such that$$1) \quad f(x)-f(a)=(\varphi(x))(x-a),\forall x\in E;$$ $$2) \quad \text{$\varphi $ is continuous at the point a} ,$$ then we call $\varphi(a)$ the derivative of $f$ at point $a.$
Using Hahn-Banach theorem, we can see this definition is also equivalent to the classic definition of derivative on Banach space.
P.P.S: A more general condition is,
Definition 6) Let $E,F$ be two additive groups, and $\mathcal{T}$ be a topology over $E,$ $\mathcal{T'}$ be a topology over $\mathcal{L}(E;F)$, $a\in E.$ Here $\mathcal{L}(E;F)$ is the set of continuous linear map $E\to F.$ Consider function $f:E\to F, \quad t\mapsto f(t),$ then if there exists a map $\varphi:(E,\mathcal{T})\to (\mathcal{L}(E;F),\mathcal{T'}), \ t\mapsto \varphi(t),$ such that$$1) \quad f(x)-f(a)=(\varphi(x))(x-a),\forall x\in E;$$ $$2) \quad \text{$\varphi $ is continuous at the point a} ,$$ then we call $\varphi(a)$ a derivative of $f$ at point $a,$ with respect to topology $\mathcal{T}$ and topology $\mathcal{T'}.$ (Under this condition the derivative may not be unique.)