Let $1 \leq p \leq \infty$ and $1 \leq q \leq \infty$ be two intgers
Is it true that $p<q \Longrightarrow \ell^p \subset \ell^q$
Thanks
Let $1 \leq p \leq \infty$ and $1 \leq q \leq \infty$ be two intgers
Is it true that $p<q \Longrightarrow \ell^p \subset \ell^q$
Thanks
Yes. To see this note that if $\sum |a_n|^p < \infty$ then it must be that $|a_n|^p< 1$ for sufficiently large $n$. Hence since $\frac{q}{p} >1$ it follows that $|a_n|^q<|a_n|^p$, which implies the result