Such approximation is a consequence of a well-known identity:
$$ \frac{\pi^3}{32} = \sum_{n\geq 0}\frac{(-1)^{n}}{(2n+1)^3} \tag{1}$$
The RHS of $(1)$ is a fast-convergent series and $32\sum_{n=0}^5 \frac{(-1)^{n}}{(2n+1)^3}\approx 31$, hence $\color{red}{\pi^3\approx 31}$.
In a similar fashion $\frac{5\pi^5}{1536}=\sum_{n\geq 0}\frac{(-1)^n}{(2n+1)^5}$ and $1536\sum_{n=0}^{6}\frac{(-1)^n}{(2n+1)^5}\approx 1530+\frac{1}{10}$ lead to
$$ \pi^5 \approx \frac{15301}{50} \tag{2} $$
but I guess that $\pi\approx\left(\frac{15301}{50}\right)^{\frac{1}{5}}$ is a less fascinating approximation than $\pi\approx 31^{1/3}$.