2

I'm trying to re-learn first-order logic and so I've tried to prove the following statement

$$ (p \rightarrow q) \rightarrow q \Leftrightarrow p \vee q $$

I tried to begin like this using the implication equivalence twice:

\begin{array} ((p \rightarrow q) \rightarrow q &\Leftrightarrow (\neg p \vee q) \rightarrow q\\ &\Leftrightarrow \neg (\neg p \vee q) \vee q\\ &\Leftrightarrow (p \wedge \neg q) \vee q \end{array}

Then I used the distributive property:

\begin{array} &\Leftrightarrow p \vee q \wedge \neg q \vee q \end{array}

And because $(\neg q \vee q)$ is a tautology, we can omit it in the formula:

\begin{array} &\Leftrightarrow p \vee q \end{array}

Is my reasoning correct? My logic skills have become really rusty as I've not seen in several years and I'm not really sure about it.

Eenoku
  • 894

2 Answers2

0

Considering the comments of Mokata, Muse_China and Stefan, the proof is correct.

Eenoku
  • 894
0

An an additional 'brushing up your skills' exercise, you can also solve this using logical equivalences involving conditional statements \ Rules (1) thru (8).

The following are logical rewrites:

$(p \rightarrow q) \rightarrow q \Leftrightarrow p \vee q$
$(p \rightarrow q) \rightarrow q {\;\Leftrightarrow}^3\;\; \neg q \rightarrow p$
$\neg q \rightarrow \neg (p \rightarrow q) {\;\Leftrightarrow}^2\;\; \neg q \rightarrow p$
$\neg q \rightarrow (p \wedge \neg q) {\;\Leftrightarrow}^5\;\; \neg q \rightarrow p$
$(\neg q \rightarrow p) \wedge (\neg q \rightarrow \neg q) {\;\Leftrightarrow}^6\;\; \neg q \rightarrow p$

But $(\neg q \rightarrow \neg q)\;$ is $(q \vee \neg q)$ is TRUE, and so by the Identity Law we are left with

$\neg q \rightarrow p {\;\Leftrightarrow}\, \neg q \rightarrow p$

CopyPasteIt
  • 11,366