$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
&\int_{0}^{\infty}{\mrm{arccot}^{2}\pars{\root{1 + x}} \over 1 + x}\,\dd x
\,\,\,\stackrel{2\,\mrm{arccot}\pars{\!\!\root{1 + x}\!\!}\ \mapsto\ x}{=}\,\,\,
{1 \over 2}\int_{0}^{\pi/2}{x^{2} \over \sin\pars{x}}\,\dd x
\\[5mm] = &\
\left.{1 \over 2}\,\Re\int_{x = 0}^{x = \pi/2}
{-\ln^{2}\pars{z} \over \pars{1 - z^{2}}\ic/\pars{2z}}\,{\dd z \over \ic z}
\right\vert_{\ z\ =\ \exp\pars{\ic x}} =
\left.\Re\int_{x = 0}^{x = \pi/2}
{\ln^{2}\pars{z} \over 1 - z^{2}}\,\dd z\,
\right\vert_{\ z\ =\ \exp\pars{\ic x}}
\\[5mm] = &\
-\,\Re\int_{1}^{0}
{\bracks{\ln\pars{y} + \pi\ic/2}^{\,2} \over 1 + y^{2}}\,\ic\,\dd y -
\Re\int_{0}^{1}
{\ln^{2}\pars{x} \over 1 - x^{2}}\,\dd x
\\[5mm] = &\
-\pi\int_{0}^{1}{\ln\pars{x} \over 1 + x^{2}}\,\dd x -
\int_{0}^{1}{\ln^{2}\pars{x} \over 1 - x^{2}}\,\dd x
\\[5mm] = &\
-\pi\
\underbrace{\int_{0}^{\infty}{\ln\pars{x} \over 1 + x^{2}}\,\dd x}
_{\ds{\substack{\ds{=\ {\large 0}}}\ \mbox{because}\\ \mbox{it}\ changes\ its\ sign\\ \mbox{under}\ x\ \to\ 1/x}}\ +\
\pi\ \underbrace{\int_{1}^{\infty}{\ln\pars{x} \over 1 + x^{2}}\,\dd x}
_{\ds{\substack{{\large =\ G}\\[1mm]\color{#f00}{\Large\S}:\ Catalan\ Constant}}}\ -\
\underbrace{\int_{0}^{1}{\ln^{2}\pars{x} \over 1 - x^{2}}\,\dd x}
_{\ds{{7 \over 4}\,\zeta\pars{3}}}\
\\[5mm] = &\
\bbx{\pi\,G - {7 \over 4}\,\zeta\pars{3}}
\end{align}
$\ds{\color{#f00}{\large\S}}$: See
Catalan Constant Page.
The last integral is evaluated as follows:
\begin{align}
\int_{0}^{1}{\ln^{2}\pars{x} \over 1 - x^{2}}\,\dd x & =
{1 \over 2}\int_{0}^{1}{\ln^{2}\pars{x} \over 1 - x}\,\dd x +
{1 \over 2}\int_{-1}^{0}{\ln^{2}\pars{-x} \over 1 - x}\,\dd x
\\[5mm] & \stackrel{\mbox{IBP}}{=}\,\,\,
-\int_{0}^{1}\mrm{Li}_{2}'\pars{x}\ln\pars{x}\,\dd x -\int_{-1}^{0}\mrm{Li}_{2}'\pars{x}\ln\pars{-x}\,\dd x
\\[5mm] & \stackrel{\mbox{IBP}}{=}\,\,\,
\int_{0}^{1}\mrm{Li}_{3}'\pars{x}\,\dd x +
\int_{-1}^{0}\mrm{Li}_{3}'\pars{x}\,\dd x =
\mrm{Li}_{3}\pars{1} - \mrm{Li}_{3}\pars{-1}
\\[5mm] & =
\zeta\pars{3} - \bracks{-\,{3 \over 4}\,\zeta\pars{3}} =
{7 \over 4}\,\zeta\pars{3}
\end{align}