This is what I got:
$(x-y)(x+y) = 19$ so $x-y \in \mathbb{N}$ and $x+y \in \mathbb{N}$
$ \implies x-y = 19 =x+y$, we know $x+y \geq 8$, not possible
$ \implies x-y = -19 =x+y$, Not possible since $x+y \in \mathbb{N}$
Hence, no $x$, $y \in \mathbb{N}$ exists.