4

I am wondering how to show that:

if $A$ is a non-negative operator, then $A$ is self-adjoint.


Def. 1. $A$ is non-negative if $\langle Ax,x \rangle \geq 0$ for $\forall x\in H$, where $H$ is a Hilbert space.

Def. 2. $A$ is self-adjoint if $A = A^*$.

Gio67
  • 20,905
Amin
  • 2,103

1 Answers1

4

For any linear $A:H \rightarrow H $, we have

$\langle A^{*}x, x\rangle = \langle x, Ax\rangle =\overline {\langle Ax, x \rangle},$

But, for $A $ non-negative, then $\langle Ax, x\rangle$ is real, so

$\langle Ax, x\rangle = \overline {\langle Ax, x \rangle}$

i.e. $\langle Ax, x\rangle =\langle A^{*}x, x\rangle $

$\implies \langle (A-A^{*})x, x\rangle = 0, \forall x \in H$.

$\\$

Claim: If $\langle Tx, x\rangle = 0 \: \forall x $ in a complex Hilbert space, then $T=0$.

Proof:

Pick any $u, v \in H $, and let $T:H \rightarrow H $ such that $\langle Tx, x\rangle = 0 \: \forall x \in H $.

Then

$ 0 = \langle T(u+v), u+v\rangle = \langle Tu, v\rangle + \langle Tv, u\rangle$

$ \implies - \langle Tu,v\rangle = \langle Tv,u\rangle $,

and

$0 = \langle T(u+iv), u+iv\rangle = i\langle Tv, u\rangle - i\langle Tu, v\rangle$

$ \implies \langle Tu,v\rangle = \langle Tv,u\rangle$.

Then $\langle Tu, v\rangle = - \langle Tu, v\rangle $

i.e. $\langle Tu, v\rangle = 0 \: \forall u,v \in H. $

$\implies T = 0. $

$\\$

Hence, $A=A^{*} $.

bloomers
  • 1,058