For what values of $a \in \Bbb{Q}$ is the extension $\Bbb{Q}(\sqrt{\sqrt{5} +a})/\Bbb{Q}$ Normal? I know that a finite extension $L/K$ such as this is normal iff it is the splitting field of some $f \in K[x]$.
My Attempt:
I think that this is the extension generated by polynomial $x^4-2ax^2 + (a^2-5)$. If we have a field $L$ s.t. $\sqrt{\sqrt{5} +a} \in L$ then $(\sqrt{\sqrt{5} +a})^2=\sqrt{5} +a \in L$.
So $\sqrt{5} \in L$ and so $\pm \sqrt{\pm \sqrt{5} +a} \in L$.
So $\Bbb{Q}(\sqrt{\sqrt{5} +a})$ is the splitting field for polynomial $x^4-2ax^2 + (a^2-5) \in K[x]$ so $\Bbb{Q}(\sqrt{\sqrt{5} +a})/\Bbb{Q}$ is always a normal exension. Is this correct??