${\rm mod}\ a^{\large 2}\!+a+1\!:\,\ 0\equiv (a^{\large 2}\!+a+1\!)(a\!-\!1)\equiv a^{\large 3}-1\ $ so $\ \color{#C00}{a^{\large 3}\equiv 1}\ $ so $\ \color{#0a0}{a^{\large 3n}}\equiv (\color{#c00}{a^{\large 3}})^{\large n}\equiv \color{#c00}1^{\large n}\equiv \color{#0a0}1$
hence $\ \color{#0a0}{a^{\large 3n}}\!-a\,\equiv\, \color{#0a0}1\!-\!a.\,$ Yours is case $\,a = 2008,\ 3n= 2007\, (\equiv 2\!+0\!+\!0\!+\!7\equiv 0\pmod{\!\!3})$
Remark $ $ More generally, as above $\ a^{\large J}\! + a^{\large K}\! \equiv a^{\large J\,{\rm mod}\,\color{#c00} 3}+ a^{\large K\,{\rm mod}\, \color{#c00}3}\,\pmod{\!a^{\large 2}\!+a+1}$
For example $\ a^{\large 2}\!+\!a\!+\!1\mid a^{\large J}\! +\! a^{\large K}\! +\! a^{\large L}\ $ if $ \ \{J,K,L\}\equiv \{2,1,0\}\pmod{\!3}$
Seee this answer for further related examples.