Argue that there are infinitely many primes p that are not congruent to 1 modulo 5.
I find this confusing. Is this saying $p_n \not\equiv 1 \pmod{5}$?
To start off I tried some examples.
$3 \not\equiv 1 \pmod{5}$
$5 \not\equiv 1 \pmod{5}$
$7 \not\equiv 1 \pmod{5}$
$11 \equiv 1 \pmod{5}$
$13 \not\equiv 1 \pmod{5}$
$17 \not\equiv 1 \pmod{5}$...
If this is what the question is asking I've come to the conclusion that this is true. Either way, I've got no clue how to write this as a proof.