The following steps lead to express the integral of your interest by a convergent series,
or in terms of the Lerch zeta function, so they may be, possibly, of some help.
Starting from
$$ \bbox[lightyellow] {
I\left( {x,a,b,\beta } \right) = \int {\tanh \left( {b\left( {x - a} \right)} \right)\,\cos \beta x\,dx}
} \tag{1} $$
and making the substitution
$$
y = b\left( {x - a} \right),\quad x = {y \over b} + a
$$
we get
$$ \bbox[lightyellow] {
I\left( {y,a,b,\beta } \right) = {1 \over b}\int {\tanh y\,\cos \left( {{\beta \over b}y + \beta a} \right)\,dy}
} \tag{2} $$
So we can reduce the analysis to the integral
$$ \bbox[lightyellow] {
\eqalign{
I_{\,r} \left( {y,c,d} \right) &= \int {\tanh y\,\cos \left( {c\,y + d} \right)\,dy} \cr
& = \,\cos \left( d \right)\int {\tanh y\cos \left( {c\,y} \right)\,dy} - \sin \left( d \right)\int {\tanh y\sin \left( {c\,y} \right)\,dy} \cr}
} \tag{3} $$
According to fundamental theorem of calculus, one of the many anti-derivatives of the above integrands can be expressed in terms of definite integrals
$$ \bbox[lightyellow] {
\eqalign{
C\left( {y,c} \right) &= \int_{t\, = \,0}^{\;y} {\tanh t\cos \left( {c\,t} \right)\,dt} \cr
& = \int_{t\, = \,0}^{\;y} {{{\sinh t} \over {\cosh t}}\cos \left( {c\,t} \right)\,dt} \cr
& = \int_{t\, = \,0}^{\;y} {{{d\left( {\cosh t} \right)} \over {\cosh t}}\cos \left( {c\,t} \right)} \cr
& = \ln \left( {\cosh y} \right)\cos \left( {c\,y} \right) + c\int_{t\, = \,0}^{\;y} {\ln \left( {\cosh t} \right)\sin \left( {c\,t} \right)dt\,} \cr}
} \tag{4.a} $$
and
$$ \bbox[lightyellow] {
\eqalign{
S\left( {y,c} \right) &= \int_{t\, = \,0}^{\;y} {\tanh t\sin \left( {c\,t} \right)\,dt} \cr
& = \ln \left( {\cosh y} \right)\sin \left( {c\,y} \right) - c\int_{t\, = \,0}^{\;y} {\ln \left( {\cosh t} \right)\cos \left( {c\,t} \right)dt\,} \cr}
} \tag{4.b} $$
Now we have that
$$ \bbox[lightyellow] {
\ln \left( {\cosh t} \right) = \ln \left( {{{e^{\,t} + e^{\, - t} } \over 2}} \right) = t - \ln 2 + \ln \left( {1 + e^{\, - 2t} } \right)
} \tag{5} $$
The integral of the first two terms, multiplied by $\cos(ct)$ or $\sin(ct)$, is quite simple.
Concerning the third, since $|e^{-2t}|<1$ for positive $t$ , we can expand it in power series of $e^{-2t}$.
Then, on the single terms of the expansion we can use the fact that
$$ \bbox[lightyellow] {
\eqalign{
& \int {e^{\,\lambda \,x} \cos xdx} = {{e^{\,\lambda \,x} \left( {\lambda \cos x + \sin x} \right)} \over {\lambda ^{\,2} + 1}} \cr
& \int {e^{\,\lambda \,x} \sin xdx} = {{e^{\,\lambda \,x} \left( {\lambda \sin x - \cos x} \right)} \over {\lambda ^{\,2} + 1}} \cr}
} \tag{6.a} $$
Otherwise, we can consider that
$$ \bbox[lightyellow] {
\eqalign{
J &= \int_{t\, = \,0}^{\;y} {\ln \left( {1 + e^{\, - 2t} } \right)e^{\, - ict} dt\,} \cr
&= \sum\limits_{0\, \le \,k} {\left( { - 1} \right)^k \int_{t\, = \,0}^{\;y} {{{e^{\, - \left( {2\left( {k + 1} \right) + ic} \right)t} } \over {k + 1}}dt\,} } \cr
& = {1 \over 2}\sum\limits_{0\, \le \,k} {\left( { - 1} \right)^k {{1 - e^{\, - \left( {2\left( {k + 1} \right) + ic} \right)y} } \over {\left( {k + 1 + ic/2} \right)\left( {k + 1} \right)}}} \cr
& = {1 \over {ic}}\left( {\sum\limits_{0\, \le \,k} {\left( { - 1} \right)^k {{1 - e^{\, - \left( {2\left( {k + 1} \right) + ic} \right)y} } \over {\left( {k + 1} \right)}}} - \sum\limits_{0\, \le \,k} {\left( { - 1} \right)^k {{1 - e^{\, - \left( {2\left( {k + 1} \right) + ic} \right)y} } \over {\left( {k + 1 + ic/2} \right)}}} } \right) \cr
& = {1 \over {ic}} {\left( {\sum\limits_{0\, \le \,k} {{{\left( { - 1} \right)^k } \over {\left( {k + 1} \right)}}} - \sum\limits_{0\, \le \,k} {{{\left( { - 1} \right)^k } \over {\left( {k + 1 + ic/2} \right)}}} } \right) -
\\ \frac{1}{ic} e^{\, - (2 + ic)y} \left( {\sum\limits_{0\, \le \,k} {{{e^{\, - \left( {2y - i\pi } \right)k} } \over {\left( {k + 1} \right)}}} + \sum\limits_{0\, \le \,k} {{{e^{\, - \left( {2y - i\pi } \right)k} } \over {\left( {k + 1 + ic/2} \right)}}} } \right)} \cr}
} \tag{6.b} $$
and express the last in terms of the Lerch zeta function
Now, remounting the steps back to (4), having put that
$$
0 \le y = b\left( {x - a} \right),\quad \;c = \beta /b,\quad \;d = \beta \,a
$$
and since we can reconduce the two components $C(y,c), \;S(y,c)$ to $0 \le y$, we get
$$ \bbox[lightyellow] {
\eqalign{
& C\left( {y,c} \right) = C\left( { - y,c} \right)\quad \left| {\;0 \le y} \right.\quad = \cr
& = \int_{t\, = \,0}^{\;y} {\tanh t\cos \left( {c\,t} \right)\,dt} = \cr
& = \ln \left( {\cosh y} \right)\cos \left( {c\,y} \right) + c\int_{t\, = \,0}^{\;y} {\ln \left( {\cosh t} \right)\sin \left( {c\,t} \right)dt\,} = \cr
& = \ln \left( {1 + e^{\, - 2\,y} } \right)\cos \left( {c\,y} \right) + {1 \over c}\sin \left( {c\,y} \right) - \ln 2 + \cr
& - c\sum\limits_{0\, \le \,k} {\left( { - 1} \right)^{\,k} {{e^{\, - 2\left( {k + 1} \right)\,y} \left( {2\left( {k + 1} \right)\sin (cy) + c\cos (cy)} \right) - c} \over {\left( {k + 1} \right)\left( {4\left( {k + 1} \right)^{\,2} + c^{\,2} } \right)}}} \cr}
} \tag{7.a} $$
and
$$ \bbox[lightyellow] {
\eqalign{
& S\left( {y,c} \right) = - S\left( { - y,c} \right)\quad \left| {\;0 \le y} \right.\quad = \cr
& = \int_{t\, = \,0}^{\;y} {\tanh t\sin \left( {c\,t} \right)\,dt} = \cr
& = \ln \left( {\cosh y} \right)\sin \left( {c\,y} \right) - c\int_{t\, = \,0}^{\;y} {\ln \left( {\cosh t} \right)\cos \left( {c\,t} \right)dt\,} = \cr
& = \ln \left( {1 + e^{\, - 2\,y} } \right)\sin (cy) + {1 \over c}\left( {1 - \cos (cy)} \right) + \cr
& + c\sum\limits_{0\, \le \,k} {\left( { - 1} \right)^{\,k} {{e^{\, - 2\left( {k + 1} \right)\,y} \left( {2\left( {k + 1} \right)\cos (cy) - c\sin (cy)} \right) - 2\left( {k + 1} \right)} \over {\left( {k + 1} \right)\left( {4\left( {k + 1} \right)^{\,2} + c^{\,2} } \right)}}} \cr}
} \tag{7.b} $$
after which, the (3) gives:
$$ \bbox[lightyellow] {
\eqalign{
& I_{\,r} \left( {y,c,d} \right) = \int {\tanh y\,\cos \left( {c\,y + d} \right)\,dy} = \cr
& = \,\cos \left( d \right)C(y,c) - \sin \left( d \right)S(y,c) \cr}
} \tag{7.c} $$
So we get a solution expressed by a converging sum.
We also easily get from the above an asymptotic expression for $y \to \infty$.