I could prove $$adj(adj(A))=|A|^{n-2}A$$ for any Non singular matrix $A$ of order $n \times n$ as follows:
we have $$adj(A)=|A|A^{-1} \tag{1}$$ Taking Inverse on both sides we get
$$(adj(A))^{-1}=\frac{1}{|A|}A \tag{2}$$
Replacing $A$ with $adj(A)$ in $(1)$ and using $(2)$ we get
$$adj(adj(A))=|adjA|(adj(A))^{-1}=\frac{|adjA|}{|A|}A=|A|^{n-2}A$$
But how can we deduce the result of $adj(adjA))$ when $A$ is Singular?