Rewrite the sum $\sum_{i=1}^{\infty }\frac {1}{(2i)(2i+1)(2i+2)}$ as
$$ \sum_{i=1}^{\infty }\frac {(2i+1)-2i}{(2i)(2i+1)(2i+2)} = \sum_{i=1}^{\infty }\frac {1}{(2i)(2i+2)} -\sum_{i=1}^{\infty }\frac {1}{(2i+1)(2i+2)} $$
Or using partial fractions
$$ \frac{1}{4} \sum_{i=1}^{\infty} \left(\frac{1}{i} - \frac{1}{i+1}\right) - \sum_{i=1}^{\infty} \left(\frac{1}{2i+1} - \frac{1}{2i+2}\right) $$
The left sum telescopes to $1$, so we get that $ \frac{1}{4} \sum_{i=1}^{\infty} \left(\frac{1}{i} - \frac{1}{i+1}\right) = \frac14$
For the right sum
$$\sum_{i=1}^{\infty} \left(\frac{1}{2i+1} - \frac{1}{2i+2}\right) = \frac13 - \frac14 + \frac15-\frac16 + \dots $$
We use series expansion for $\ln(1+x)$
$$ \ln(1+x) = \sum_{k=1}^{n} \frac{(-1)^{k-1}x^k}{k} = x-\frac{x^2}{2}+\frac{x^3}{3} - \frac{x^4}{4} + \dots $$
Plug in $x=1$, to get that
$$ \ln 2 = 1 - \frac12 + \frac13 - \frac14 + \frac15 - \dots $$
Or
$$\frac13 - \frac14 + \frac15-\frac16 + \dots = \ln 2 - \frac12 $$
and that's our right sum so the final sum is equal to
$\frac14 - \ln2 + \frac12 = \frac34-\ln2 $