How to prove this inequation?
$\displaystyle\left(\sum_{j=1}^{N}a_j\right)^{\theta}\leq N^{\theta-1}\displaystyle\sum_{j=1}^{N}{a_j}^{\theta}$,
where $a_j$ be a sequence of positive reals and $1 ≤ θ < ∞$.
I try to rewrite this inequation into $1≤N^{θ-1}\left[\left(\frac{a_1}{\sum_{j=1}^{N}{a_j}}\right)^θ+\left(\frac{a_2}{\sum_{j=1}^{N}{a_j}}\right)^θ+...+\left(\frac{a_n}{\sum_{j=1}^{N}{a_j}}\right)^θ\right]$. But what should I do next? For $N=2$, I can prove it.