Premise: $m \mid a$
Premise: $n \mid a$
Premise: $\gcd(m,n)=1$
Show: $mn \mid a$
?Proof:
$m \mid a \Rightarrow mn \mid an$
$n \mid a \Rightarrow mn \mid am$
$mn \mid am \wedge mn \mid an \Rightarrow mn \mid (ams + ant) \Rightarrow mn \mid a(ms+nt) \; \forall s, t \in \mathbb{z}$
By Bezout's lemma, $\exists x, y \in \mathbb{Z}$ such that $mx+ny=1$.
Assume we have the solution for $(x, y)$.
Then substituting into above, $ mn \mid a(mx+ny) \Rightarrow mn \mid a \cdot 1 \Rightarrow mn \mid a$
Is there a flaw in this?