Suppose $\| \cdot \|_{\alpha}$ and $\| \cdot \|_{\beta}$ are two norms on a vector space $X.$ Show that the two norms are equivalent if and only if the normed spaces $(X,\|\cdot\|_{\alpha})$ and $(X,\|\cdot\|_{\beta})$ have the same open sets.
My attempt:
Denote $\tau_{\alpha}$ and $\tau_{\beta}$ as topology induced by $\| \cdot \|_{\alpha}$ and $\| \cdot \|_{\beta}$ respectively.
$(\Rightarrow):$ Suppose that there exists $c_1>0$ and $c_2>0$ such that $c_1 \| x \|_{\alpha} \leq \|x\|_{\beta} \leq c_2 \| x \|_{\alpha}.$ We wish to show that $\tau_{\alpha} = \tau_{\beta}.$ Let $U_{\alpha} \in \tau_{\alpha}$ and $x \in U_{\alpha}.$ Since $U_{\alpha}$ is open, there exists $\delta>0$ such that $B(x,\delta) \subseteq U_{\alpha}.$ By assumption, we have $B_{\beta}(x,\delta c_1) \subseteq B_{\alpha}(x,\delta) \subseteq U_{\alpha}.$ Hence, $U_{\alpha} \subseteq \tau_{\beta}.$
Let $U_{\beta} \in \tau_{\beta}$ and $x \in U_{\beta}.$ Since $U_{\beta}$ is open, there exists $\delta>0$ such that $B_{\beta}(x,\delta) \subseteq U_{\beta}.$ By assumption, we have $B_{\alpha}(x,\delta/c_2) \subseteq B_{\beta}(x,\delta)\subseteq U_{\beta}.$ Hence, $U_{\beta} \in \tau_{\alpha}.$ Therefore, $\tau_{\alpha} = \tau_{\beta}.$
Is my proof above correct? I do not know how to prove the other direction.
Any hint would be appreciated.