Let $(a_n)_{n\in\mathbb N}\subseteq[0,\infty)$. Since $\left(\sum_{k=1}^na_k\right)_{k\in\mathbb N}$ is increasing, $$a:=\sum_{k=1}^\infty a_k=\lim_{n\to\infty}\sum_{k=1}^na_k=\sup_{n\in\mathbb N}\sum_{k=1}^na_k\in[0,\infty]\;.$$
I want to conclude $$\sum_{k=n+1}^\infty a_k\xrightarrow{n\to\infty}0\;.\tag1$$
We should have \begin{equation}\begin{split}\lim_{n\to\infty}\sum_{k=n+1}^\infty a_k&=\lim_{n\to\infty}\lim_{N\to\infty}\sum_{k=n+1}^Na_k\\&=\lim_{n\to\infty}\lim_{N\to\infty}\left(\sum_{k=1}^Na_k-\sum_{k=1}^na_k\right)\\&=\lim_{n\to\infty}\left(a-\sum_{k=1}^na_k\right)=a-a=0\;.\end{split}\tag2\end{equation} I want to stress that I don't think that there is any problem even when $a=\infty$ (since $\infty-\infty=0$). However, in any proof in which I saw things like $(1)$, the author concludes $(1)$ by noting that $a<\infty$. So, what am I missing?