How can I solve this sum?
$\sum_{k=1}^{n}k2^{k-1}$
Is $\sum_{k=1}^{n}k2^{k-1}$ equals to $\sum_{k=1}^{n}k * \sum_{k=1}^{n}2^{k-1}$
How can I solve this sum?
$\sum_{k=1}^{n}k2^{k-1}$
Is $\sum_{k=1}^{n}k2^{k-1}$ equals to $\sum_{k=1}^{n}k * \sum_{k=1}^{n}2^{k-1}$
PARTIAL SOLUTION:
Here is how you would solve it. Set the sum equal to a variable $$S(n)=2^0+2*2^1+3*2^2+...+n*2^{n-1}$$ Then multiply both sides by $(1-2)$: $$S(n)(1-2)=(1-2)(2^0+2*2^1+3*2^2+...+n*2^{n-1})$$ Distribute: $$S(n)(1-2)=2^0+2*2^1-2^1+3*2^2-2*2^2+...+n*2^{n-1}-(n-1)*2^{n-1}-n*2^n$$ $$-S(n)=2^0+2^1+2^2+...+2^{n-1}-n2^n$$ Can you take it from here?