$\forall set\; A,B,C\;\;$Let $a=card(A),\;\; b=card(B),\;\; c=card(C)$
Claim
prove $(ab)^c = a^cb^c$
We need to show that $(A\times B)^C \approx A^c \times B^c$.
Thus let $\pi_A:A\times B\rightarrow A\;$ $\pi_B: A\times B \rightarrow B$ be the projections.
then the function: $$\phi:(A\times B)^C \rightarrow A^C \times B^C$$ prescribed by: $$h \mapsto (\pi_A \circ h, \pi_B \circ h)\tag{3.19}$$ is bijective.
Question
my textbook requires to find the inverse function of (3.19).
Is it sufficient for me to denote the inverse of (3.19) as follow?
$(\pi_A \circ f, \pi_B \circ g) \mapsto f : A^C \times B^C \rightarrow (A\times B)^C $ where $f: C \rightarrow A \times B$