I'm learning affine geometry, specifically affine maps, and need help with the following problem :
We give the affine planes
$$P_1 = \{(x, y, z) \in \mathbb R^3 : 3x + 2y + z = 6\} \quad \text{and} \quad P_2 = \{(x, y, z) \in \mathbb R^3 : -x - 2y + 3z = 2\}$$
$(1)$ Find affine bases $(a_0, a_1, a_2)$ and $(a_0', a_1', a_2')$ of $P_1, P_2$ respectively with $a_i$ (resp. $a_i'$) the points of intersection of the planes with the three axes $x, y, z$.
$(2)$ Find the affine transformation $f : P_1 \to P_2$, with respect to the above bases, which send $a_0$ to $-a_0'+2a_2'$, $a_1$ to $(a_0' + a_1' + a_2')/3$ and $a_2$ to $(a_1' + a_2')/2$. Is it regular (invertible)? Find the inverse image of the point $3a_1' - 5a_2'$.
Since I'm having difficulties for $(2)$ I'm going to share my work for $(1)$.
$(1)$ We first determine the desired basis for the plane $P_1$. To find the $x$-intercept we set the $y$ and $z$ coordinates equal to zero. This gives
$$3x + 2(0) + 0 = 6 \iff x = 2 \implies a_1 = (2, 0, 0).$$
We proceed similarly for the $y$ and $z$-intercept. We find the vectors $a_1 = (0, 3, 0)$ and $a_2 = (0, 0, 6)$. Hence
$$(a_0, a_1, a_2) = ((2, 0, 0), (0, 3, 0), (0, 0, 6))$$
is the desired ordered affine basis for $P_1$.
Using the same methodology, the desired affine basis for $P_2$ is given by
$$(a_0', a_1', a_2') = ((-2, 0, 0), (0, -1, 0), (0, 0, 2/3)).$$
Is my work correct for $(1)$? Unfortunately I have no idea how to solve $(2)$. I'm looking for an answer which makes use of the following definition :
Definition. An affine transformation of $\mathbb R^n$ is a function $t : \mathbb R^n \to \mathbb R^n$ of the form $$t(\mathbf x) = \mathbf{Ax} + \mathbf b, $$ where $\mathbf A$ is an invertible $n \times n$ matrix and $\mathbf b \in \mathbb R^n$.