The approximation for $e$ involved in An integral for $2\pi+e-9$ exactly matches a truncation of factorial reciprocal series
$$\sum_{k=0}^5 \frac{1}{k!} =\frac{163}{60}$$
In contrast, the difference
$$\frac{19}{7}-\sum_{k=0}^N \frac{1}{k!}$$ never cancels but it is a unit fraction for $N=3,4,5,7$.
$$\frac{19}{7}-\sum_{k=0}^3 \frac{1}{k!}=\frac{1}{21}=\frac{2}{6·7}$$
$$\frac{19}{7}-\sum_{k=0}^4 \frac{1}{k!}=\frac{1}{168}=\frac{3}{7·8·9}$$
$$\frac{19}{7}-\sum_{k=0}^5 \frac{1}{k!}=-\frac{1}{420}=-\frac{4}{5·6·7·8}$$
$$\frac{19}{7}-\sum_{k=0}^7 \frac{1}{k!}=-\frac{1}{252}=-\frac{2}{7·8·9}$$
Is this list complete?