Look at the prime factorizations below, these are $u^2 + 1$ for integers $u.$ What do you see, or, more to the point, what do you not see? Can you prove that?
see general phenomenon, with proof, my answer at Prime divisors of $k^2+(k+1)^2$
The thing you do not see in the output below is any prime factors $q$ with $q \equiv 3 \pmod 4.$ Those would be $3,7,11,19,23,31,43,...$ Not there. The odd prime factors are $1 \pmod 4,$ as $5,13,17,29,37,41,...$
============================
u 0 u^2 + 1 1 = 1
u 1 u^2 + 1 2 = 2
u 2 u^2 + 1 5 = 5
u 3 u^2 + 1 10 = 2 * 5
u 4 u^2 + 1 17 = 17
u 5 u^2 + 1 26 = 2 * 13
u 6 u^2 + 1 37 = 37
u 7 u^2 + 1 50 = 2 * 5^2
u 8 u^2 + 1 65 = 5 * 13
u 9 u^2 + 1 82 = 2 * 41
u 10 u^2 + 1 101 = 101
u 11 u^2 + 1 122 = 2 * 61
u 12 u^2 + 1 145 = 5 * 29
u 13 u^2 + 1 170 = 2 * 5 * 17
u 14 u^2 + 1 197 = 197
u 15 u^2 + 1 226 = 2 * 113
u 16 u^2 + 1 257 = 257
u 17 u^2 + 1 290 = 2 * 5 * 29
u 18 u^2 + 1 325 = 5^2 * 13
u 19 u^2 + 1 362 = 2 * 181
u 20 u^2 + 1 401 = 401
u 21 u^2 + 1 442 = 2 * 13 * 17
u 22 u^2 + 1 485 = 5 * 97
u 23 u^2 + 1 530 = 2 * 5 * 53
u 24 u^2 + 1 577 = 577
u 25 u^2 + 1 626 = 2 * 313
u 26 u^2 + 1 677 = 677
u 27 u^2 + 1 730 = 2 * 5 * 73
u 28 u^2 + 1 785 = 5 * 157
u 29 u^2 + 1 842 = 2 * 421
u 30 u^2 + 1 901 = 17 * 53
===========================================