Evaluate $$I=\int_{0}^{\infty} \frac{dx}{1+x^{2017}}$$
I have splitted the integral as:
$$I=\int_{0}^{1} \frac{dx}{1+x^{2017}}+\int_{1}^{\infty} \frac{dx}{1+x^{2017}}=I_1+I_2$$
where $$I_2=\int_{1}^{\infty} \frac{dx}{1+x^{2017}}$$ For $I_2$ i used substitution $x=\frac{1}{v}$ then we get
$$I_2=\int_{1}^{0}\frac{-v^{2015}\:dv}{1+v^{2017}}=\int_{0}^{1}\frac{x^{2015}\:dx}{1+x^{2017}}$$ hence
$$I=I_1+I_2=\int_{0}^{1}\frac{(1+x^{2015})\:dx}{1+x^{2017}}$$
Any clue here?