1

Here are a few $3 \times 3$ matrices

A)$$ \begin{pmatrix} 1& 0& 0\\ 0 & 1 & 0\\ 0& 0 & 1\end{pmatrix}$$B)$$ \begin{pmatrix} 1& 0& 0\\ 0 & 1 & 0\\ 0& 0 & -1\end{pmatrix}$$C)$$ \begin{pmatrix} 1& 0& 0\\ 0 & -1 & 0\\ 0& 0 & -1\end{pmatrix}$$D)$$ \begin{pmatrix} -1& 0& 0\\ 0 & -1 & 0\\ 0& 0 & -1\end{pmatrix}$$

How can say if these matrices are the square of a $3 \times 3$ matrix with real entries or not?

Fullatron
  • 403
  • 1
  • 4
  • 6

1 Answers1

4

A necessary condition for a real matrix to have a real square root is to have a non-negative determinant.

Indeed, if $A=B^2$, then $\det(A)=\det(B)^2\geqslant 0$.

Method. If $A$ is diagonalizable and has positive eigenvalue, a square root can be found taking the square root of its eigenvalues, namely if $A=P\Lambda P^{-1}$, then $B=P\Lambda^{1/2}P^{-1}$ is a square root of $A$.

C. Falcon
  • 19,042