3

How to integrate $\displaystyle \int_a^b t \cdot \sqrt{\frac{t - a}{b - t}} \,dt$?

I literally have no idea how to integrate this integral.

I've tried all basic methods, but it seems like a quite hard problem for a beginner.

Jaideep Khare
  • 19,293
  • By the way, this is a hard problem, and I would wager that almost no calculus student in the US finishing integral calculus would get it successfully. – Ted Shifrin May 31 '17 at 23:34
  • @TedShifrin Well, may be this is true in US. We are taught about this and similar problems here in India. Even I too am a high school student (Moved to 12th grade this year.) – Jaideep Khare May 31 '17 at 23:39
  • 1
    Yes, I freely admit the US has watered down its curriculum in many ways. Not the least of our problems, however. ... :( – Ted Shifrin Jun 01 '17 at 00:19
  • I would say that high school students taking calculus in the U.S. are generally taught methods of trig substitution. I would also argue that there are some pretty steeply diminishing returns when it comes to being able to compute difficult integrals (at least nowadays). This is rarely the sort of problem that a serious math student in college would spend much time doing (outside of contest math like the Putnam Competition). – Michael L. Jun 01 '17 at 08:25

4 Answers4

15

Do the following substitution

$$t=a\cos^2 \theta+b \sin^2 \theta \implies \mathrm dt=(b-a) \sin 2 \theta \, \mathrm d \theta$$

Your function $\displaystyle \sqrt{\frac{t - a}{b - t}}$ will be tremendously simplified to $\tan \theta$. Hence, your integral will be simplified :

\begin{align} \int_a^b t \cdot \sqrt{\frac{t - a}{b - t}} \, \mathrm dt&=\int_0^{{\pi}/{2}} (a\sin^2 \theta+b \cos^2 \theta) \cdot \tan \theta \,((b-a) \sin 2 \theta \, \mathrm d \theta)\\ &= ~a\int_0^{{\pi}/{2}} \frac{\sin^3 \theta}{\cos \theta}\, \cdot (b-a) \sin 2 \theta \, \mathrm d \theta+ b\int_0^{{\pi}/{2}}\frac{ \sin 2 \theta}{2} \, (b-a) \sin 2 \theta \, \mathrm d \theta\\ &=~(b-a) \left(2a \int_0^{{\pi}/{2}} {\sin^4 \theta}\, \mathrm d \theta + \frac b2 \int_0^{{\pi}/{2}}{ \sin^2 2 \theta} \, \mathrm d \theta \right)\\ &=~(b-a) \left(2a \cdot\frac{3\pi}{16} + \frac b2 \cdot\frac{\pi}{4}\right) \\ &=\frac\pi8 (b-a) (3a+b) \end{align}

Jaideep Khare
  • 19,293
3

$ \frac{t-a}{b-t} $ increases from $0$ to $\infty$ on the interval of integration, so let's try $u^2=\frac{t-a}{b-t}$. Then $t = \frac{a+bu^2}{1+u^2} $, so $dt = \frac{2(b-a)u}{(1+u^2)^2}$. Hence the integral becomes $$ 2(b-a)\int_0^{\infty} \frac{u^2(a+bu^2)}{(1+u^2)^3} \, du, $$ which can be done using, for example, integration by parts.

Chappers
  • 67,606
3

$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ \begin{align} \left.\int_{a}^{b}t\root{t - a \over b - t}\,\dd t\,\right\vert_{\ a\ <\ b} & \stackrel{t\ \mapsto\ t - \pars{a + b}/2}{=}\,\,\, \int_{-\pars{b - a}/2}^{\pars{b - a}/2}\pars{t + {a + b \over 2}}\root{t + \pars{b - a}/2 \over \pars{b - a}/2 - t}\,\dd t \\[5mm] & \stackrel{2t/\pars{b - a}\ \mapsto\ t}{=}\,\,\, {b - a \over 2}\bracks{{b - a \over 2}\!\int_{-1}^{1}\!t\root{1 + t \over 1 - t}\,\dd t + {b + a \over 2}\!\int_{-1}^{1}\!\root{1 + t \over 1 - t}\,\dd t} \\[5mm] & = {\pars{b - a}^{2} \over 4}\int_{-1}^{1}{t\root{1 - t^{2}} \over 1 - t}\,\dd t + {b^{2} - a^{2} \over 4}\int_{-1}^{1}{\root{1 - t^{2}} \over 1 - t}\,\dd t \\[5mm] & = {\pars{b - a}^{2} \over 2}\ \underbrace{\int_{0}^{1}{t^{2} \over \root{1 - t^{2}}}\,\dd t} _{\ds{\pi \over 4}}\ +\ {b^{2} - a^{2} \over 2}\ \underbrace{\int_{0}^{1}{\dd t \over \root{1 - t^{2}}}}_{\ds{\pi \over 2}} \end{align}

The last integrals were evaluated with the substitution $\ds{t \equiv \sin\pars{\theta}}$.


$$ \left.\int_{a}^{b}t\root{t - a \over b - t}\,\dd t\,\right\vert_{\ a\ <\ b} = \bbx{{\pars{b - a}\pars{3b + a} \over 8}\,\pi} $$
Felix Marin
  • 89,464
1

HINT:

WLOG $b\ge a$

For real calculus, we need $b>t\ge a$

$$\iff b-\dfrac{a+b}2>t-\dfrac{a+b}2\ge a-\dfrac{a+b}2\iff\dfrac{b-a}2>t-\dfrac{a+b}2\ge-\dfrac{b-a}2$$

WLOG we can choose $t-\dfrac{a+b}2=\dfrac{b-a}2\cos2y$ where $0\le2y\le\pi$

$$\implies dt=(b-a)\sin2y\ dy$$

and $2t=a+b+(b-a)\cos2y=2(b\cos^2y+a\sin^2y)$

$$\dfrac{t-a}{b-t}=\dfrac{(b-a)\cos^2y}{(b-a)\sin^2y}$$

As $0\le2y\le\pi,$ $$\sqrt{\dfrac{t-a}{b-t}}=+\cot y$$