I need to calculate the integral: $$\int\limits_{\mathbb{R}^n} \frac{dx}{(1+|x|^2)^p}$$ (That's all the question asks, so I believe that I also should determine the values of $p$ for which this integral converges).
My attempt is using the co-area formula with $\Phi(x)=|x|$ (which has $|\nabla\Phi|=1$):
$$\int\limits_{\mathbb{R}^n} \frac{dx}{(1+|x|^2)^p}= \int\limits_{0}^{\infty} \left ( \int\limits_{S_r} \frac{1}{(1+r^2)^p}dS(x) \right ) dr=\int\limits_{0}^{\infty} \frac{1}{(1+r^2)^p}vol_{n-1}(S_r) dr= \\ \omega \int\limits_{0}^{\infty} \frac{r^{n-1}}{(1+r^2)^p} dr$$ where $S_r$ is the $0$-centered $(n-1)$-dimentional sphere of radius $r$, and $\omega$ is the $(n-1)$-volume of $S_1$.
Now I'm stuck with that last improper integral. Any ideas/alternative methods will be welcomed. Thank you!